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Sonar Based Position Estimation System for an Autonomous 
Mobile Robot Operating in an Unknown Environment 

Seung Kyun Kang* and Jong Hwan Lim** 
(Received June 23, 1998) 

The paper presents a new method of position estimation for robot navigation in a completely 

unknown environment. The method is different from conventional ones in that it does not need 

any kind of a priori reference model or man-made landmarks. A series of local maps is built 

and updated from sonar data while the robot is exploring the unknown environment. Among 

the constructed local maps, the robot autonomously selects the ones with distinctive features and 

memorizes them as reference landmarks. An orientation clustering method is developed which 

enables the robot to extract the features of the map. The maps selected in such a way are then 

used to estimate the position and orientation of the robot while undertaking the given task. In 

doing so correspondence indices are defined to determine the corresponding reference map to the 

current local one among the numerous stored maps. The two maps are matched so as to 

minimize the discrepancy between them, thus enabling one to estimate the position and 

orientation of the robot. The usefulness of all these approaches is illustrated with the results 

produced by a real robot equipped with ultrasonic sensors. 

Key Words: Position Estimation, Mobile Robot, Orientation Chustering, Correspondence 
lndix, Map Match 

1, Introduction 

Determining the position of a robot relative to 

a reference coordinate frame or a special object is 

an important issue in autonomous mobile robot 

research. In many cases, dead reckoning alone 

cannot provide sufficient accuracy because its 

error tends to accumulate without bound. Dead 

reckoning error comes from the assumption that a 

revolution of the axle implies a fixed distance 

traveled by the wheel. Several factors make this 

assumption inaccurate: wheel slip on the ground, 

irregularity of the ground surface, etc.. This class 

of errors is random in nature. Another class of 

errors involved in dead reckoning are systematic 
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errors, which are not random in nature: imperfec- 

tion of the wheel shape, different radii between 

wheels etc. It is therefore generally required to use 

additional position estimators, e.g., beacon or 

landmark based estimators. 

Beacon and artificial l andmark  based 

estimators require, respectively, the emplacement 

of beacons and the presence of man-made struc- 

tures in the environment. Leonard and Durrant-  

Whyte(Leonard, 1992) used an extended Kalman 

filter approach to estimate the position of a robot 

from an a priori map of the environment. Hyppa 

(Hyppa, 1989)made use of the reflective strips in 

the environment for a rotating laser mounted on 

the robot. Kleeman (Kleeman, 1989 and 

Kleeman, 1992) explored a method that combines 

ultrasonic beacon and dead reckoning data using 

an extended Kalman filter to estimate the optimal 

positioning and heading values for a robot. 

On the other hand, some researchers utilized 

natural landmarks for which information used for 

position and orientation estimation is also used 
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for motion planning. Crowley (Crowley, 1986 

and Crowley, 1992) developed a feature-based 

landmark system in which a set of distinctive 

features is extracted from the sensed data. The 

features are then matched with the corresponding 

world model consisting of line segments to esti- 

mate the robot 's position and orientation. Chati la 

(Chatila, 1992) has explored a similar method to 

Crowley's except that the world model used here 

consists of polygons. Another kind of natural 

landmark system, called cell-based or iconic sys- 

tems, was developed in (Elfes, 1987 etc). It works 

directly on the raw sensed data, minimizing the 

discrepancy between the raw data and the refer- 

ence model. The reference models should be given 

in advance in all of these methods except the 

work described in Elfes (1987). 

Consequently, conventional position estima- 

tion can be divided into two different approaches: 

artificial landmark or beacon systems, and natu- 

ral landmark systems. The former is more efficient 

and convenient in estimating the absolute posi- 

tion of the robot, although its prior placement 

restricts the autonomous behavior of the robot. 

The latter method utilizes a whole or partial  

environment of the work space itself, i t  thus 

necessitates a matching (or minimization) proce- 

dure between a reference model and the sensed 

data to estimate the robot 's  position, which usu- 

ally requires significant computation. Most of the 

natural landmark systems also need a reference 

model given in advance. 

This paper addresses a new position estimation 

method utilizing natural landmarks without any a 

priori  information of the environment. The 

method is different from conventional ones in that 

it does not need any kind of a priori reference 

model. It automatically selects reference models 

from workspace. The underlying idea of this 

method is that a human memorizes only very 

impressive objects along a route, such as an old 

building, a very high tower, or a street corner, and 

uses them as landmarks. Likewise, a robot, also 

finds distinctive features from its workspace and 

uses them to estimate its position when it revisits 

there. 
To accomplish this, a series of local maps is 

continuously built and updated from sonar range 

data while the robot is exploring its work space. 

Among the series of local maps, the ones with 

distinctive features are selected and stored as 

reference maps (landmarks).  The reference maps 

thus selected are then used to estimate the posi- 

tion and orientation of the robot  while perform- 

ing the given tasks. We utilize the correspondence 

between the reference and current local maps 

together with a cell-based matching method that 

minimizes the discrepancy between them. 

2. Local Map Representation and 
Classification of Its Shapes 

The position estimation system in this paper is 

based on a sonar map. This section describes the 

concept of a local map, how to update it, and how 

to classify its features. 

2.1 Local  map 

In this paper, we consider ultrasonic sensors 

that are cheap and easy to use. Sensed data are 

processed into a sonar probabil i ty  map, which is 

composed of 2-D occupancy girds updated from 

the well-known Bayesian Updating Model(Lira,  

1992 etc). We, however, modified slightly the 

original model to avoid high computational  cost 

and enable real time operation (Lira, 1994b); cells 

in an empty region where a sonar beam passes 

through are not updated (provided they have 

never been updated before) because the occupied 

cells can only be the boundary of an object. On 

the other hand, cells in an empty region that have 

already been updated from the previous data are 

still updated because they could possibly be a 

phantom object due to false readings. The method 

will lower somewhat the quality of the resulting 

map ccmpared to the original methed, but it can 

provide an effective means for the robot to distin- 

guish the boundary of objects from the free space. 

At the initial stage of operation, a robot  

explores its work space to collect information on 

the area. A factory, office area or corridor is 

generally too spacious for the robot to construct a 

fine resolution map of the entire area because the 

resolution of a map depends largely on the grid 
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Fig, I Configuration of a local map. 

size. Therefore, a local map is used to construct a 

high resolution map in real time with limited 

memory capacity and computing speed. Another 

advantage to using a local map is that it is easy 

and fast to classify the shapes of objects in the 

map, which is important for position estimation. 

Figure 1 shows the configuration of a local 

map. The size of the local map is 48 • cells and 

each cell represents a real--world square of size 0. 

05 )< 0.05m 2. The center of a local map is identical 

to that of a robot, and the map is continuously 

translated with the movement of the robot. The 

orientation of the local map is fixed with respect 

to the frame of reference. 

2.2 Classification of shapes in a local map 
The shape of an object in a local map plays an 

important role in our position estimation system. 

Different kinds of shapes give different kinds of 

position information. That is, a linear shape can 

only provide information on orientation, and a 

complete circular shape only on position, and a 

cornered object on both. Accordingly, the robot 

should have the ability to classify the shapes of 

objects in reference maps and to memorize what 

kinds of information they can provide in order to 

use them for position and orientation estimation. 

In addition, at the position estimation stage, the 

robot should check if the shape of the current 

local map corresponds to that of the reference 

map to be matched in order to avoid situations in 

which maps of different shapes are matched 

together. 

The the probability map from our map con- 

struction model also provides information on 

orientation of each cell. The method makes use of 

the specular reflection property of a sonar sensor, 

i,e., the sensor cannot detect an object whose 

surface is not almost normal to the beam path. 

The orientation of each occupied cell is also 

updated while the occupancy probability is updat- 

ed(Lira, 1996). We develop a method that can 

classify the shapes of objects in a local map using 

this orientation information in real time. 

To classify the shape of objects from the orien- 

tation intbrmation, the orientations of the oc- 

cupied cells are clustered into groups according to 

their values. Then the center of each cluster is 

estimater of a which is the average angle of the 

orientations of the cells in each cluster. For exam- 

ple, a corner of a wall that forms a right angle 

would be clustered into two groups, and the 

relative angle between the two centers would be 

about 90 ~ . The number of clusters, therefore, 

means the number of line segments of objects in 

the local map, and the value of each center itself 

represents the orientation of the line segment with 

respect to the reference frame. We set the mini- 

mum number of cells, Nmm, for the line segment 

and discard the line segments under Nmm assum- 

ing these are either small objects or line segments 

that are not sufficiently identified. The orientation 

of each line segment itself; however, has no 

meaning because there can always be an angle 

error of the robot with respect to the reference 

frame. Only the relative angle between line seg- 

ments can give information on the shape of the 

object. These two pieces of information, the rela- 

tive angle and the number of line segments, can 

completely characterize the shape of the object in 

the local map. 

3. Error Propagat ion Mode l  o f  Robot's 

Pos i t ion  and Orientat ion  

The error propagation model describes how the 

robot's position and orientation change with time 

in response to a control input and noise distur- 

bance. Let Xk(=Ixk ,  yk, t~,] T) be the robot's 

position and orientation state vector, uk the con- 
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trol input, and Wk be the noise disturbance at 
some time k, The general discrete form of the state 
vector is 

Xk+lqI(Xk, Uk)+Wk, wk--N(0 ,  Qk) (1) 

where ~ (Xk, u~) is the nonlinear state transition 

function. The notation vck--N(0, Qk) indicates 
that this noise source is assumed to be zero-mean 
Gaussian with covariance Qk (Gellb, 1973) 

The model we have used is based on point 
kinematics(Smith, 1986). The control input u_k= 
[dk, A0klW is a forward translation by a distance 

dk and a rotation by an angle AOk. Then the state 
transition q)(Xk, uk) has the form 

[xk+dkcoS&]  
r u,)=/y,+d,sin0~/ (2) 

L 0k "~- 2 0k l 

The error covariance matrix Pk at time k is 

defined as 

P k = E [ 2 k  Xk T] (3) 

where the error vector Xk is the difference 

between the true state Xk and the estimated one 

Xk from dead reckoning, i. e., 2k----2k--Xk. We 
then can write the estimated state 2k+~ at time k 

+ 1 such that 

Xk+l = r (Xk, u 0  (4) 

By linearizing Eq. (1) about the estimated 

~(~ we have 

Xk+,'-CP(Xk, Uk) +J(X~-2~) +wk (5) 
where J is the Jacobian of  the state transition 

function q~ (Xk, uk) whice has the form 

[i ~ J -  I d ,cos~,  I (6) 
0 1 J 

Subtracting Eq. (5) from Eq. (4), we have the 

error vector at time k +  1, 

~,~,  = J  ( 2 , - X k )  --VCk (7) 

The error covariance matrix Pk+~ at time k +1 
can be found by squaring Eq. (7), and taking 

expectations to yield 

I ' ,+ ,=E[Xk+,  Xk+,Tl 

= J E [ X k  X k r ] J r + E [ w k  wkrJ 
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Since the last two terms of the right hand side 

in Eq. (8) are zero because Xk and Wk are 
uncorrected(wk is zero-mean Gaussian random 

variable), Eq. (8) is 

Pk+ l=JPkY +Qk (9) 

By using Eq. (9) we can estimate the error 
range of the robot's current position from the 

multidimensional Gaussian probability distribu- 
tion (Smith, 1986). 

4. Autonomous Selection of 
Reference Maps 

Selection of landmarks is a key issue tbr posi- 

tion estimation in an autonomous mobile robot 

system. Memorizing all the local maps as refer- 
ence landmarks seems to be redundant and an 
excessive waste of time and memory. In addition, 

a different map can give different kinds of infor- 
mation according to the shape of object, and some 
of them cannot give sufficient information for 

position estimation. This section develops a 
method that can select and store distinctive maps 
among a series of local maps. 

4.1 Strategies  for the selection of reference 

maps 
Among successive local maps, only the one that 

can give as much information on position (x, y, 
0) as possible is considered to be qualified for a 

reference map. Furthermore, the method should 
be able to be applied in real time execution. 
Therefore, considering that our map is composed 
of occupancy grids, we set up the following strat- 
egy for the selection of reference maps: 
1. Select a distinctive feature such as a cornered 

shape. A local map composed of one line 

segment does not provide any inlbrmation on 

position (x, y),  it only gives orientation infor- 
mation relative to the frame of reference. In 
cases where the robot operates near a long 

straight wall, however, the orientation infor- 
mation itself could be important because the 
heading error of the robot will result in a large 

position error over the traveling distance. A 
local map composed of one line segment is also 
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selected in a regular interval,  D . . . .  as well as 

those with cornered shapes. 

2. Select a map with as many occupied cells as 

possible. The occupied cells can provide infor- 

mation about the configuration of the object in 

a local map thus providing position informa- 

tion. The more occupied cells the map has, the 

better the matching quality becomes. 

3. Configurations (shapes) of an object in a 

reference map should be such that it can be 

easily distinguished from neighboring ones. In 

the real world there may be many objects 

whose configurations are identical. This will 

cause the robot to be confused about which 

reference map it should select to match the 

current local map in the position estimation 

step. 

4. Keep a certain distance Drain between reference 

maps. Considering the memory capacity and 

the time needed to check the correspondence 

between maps, it is desirable that only one 

reference map exist within the error bound of 

the robot's current position. 

Items 1 and 2 may seem to be redundant 

because a map of a cornered shape always has 

more occupied cells than that of a linear shape 

does. In the real world, however, the number of 

occupied cells in a local map is largely dependent 

on the surface roughness; a smooth surface is 

seldom detected by a sensor due to multipath 

effects, so that the number of occupied cells tu 

a smooth surface is much less than that from a 

rough one. Also, the number of occupied cells in 

a map can be changed according to the movement 

of the robot even though the shape of the map 

remains unchanged, and a cornered shape with 

two line segments generally has fewer cells than 

that with more than two line segments. Therefore, 

item 2 is necessary to select a reference map 

having as much position information as possible. 

There should be no position error in a reference 

map if it to be used as a global reference, it is, 

however, impossible to realize in a truly autono- 

mous system to which no a priori reference map is 

given. Thus we assume that the position error 

produced in the initial exploration step is negli- 

gible compared to that in the task execution step. 

The assumption is valid for small workspaces 

such as an indoor environment. 

In a wide workspace, the error involved in the 

reference maps can be significant so that they 

cannot be used as a global reference. However, if 

the robot needs only its relative position to a 

certain object or wall, the reference maps selected 

under the above assumption can still provide the 

necessary information for robot's operation. Con- 

sequently, the use of a reference map makes it 

possible for the robot to operate in its workspace 

within the initial error range produced during the 

exploration step. 

4.2 Selection algorithm 
Using the method described in the preceding 

sections, the current local map is stored as a 

reference map according to one of the following 

c a s e s :  

1. D > Dmx 

2. D > Dram and N~ > 2 

3. If D<Dmm, save the current local map accord- 

ing to one of the tbllowing cases and remove 

the nearest reference map saved previously; 

(a) N~ of current m a p > N s  of the nearest 
reference map 

(b) N~ of current m a p > N o  of the nearest 

reference map 

(c) Ns of the nearest reference m a p =  1 and N~ 

of current m a p > 2  

where, 

D : distance between the centroids of the near- 

est reference map and current map 

Nc : total number of occupied cells in a map 

N~ : total number of line segments in a map 

Case 1 corresponds to the robot following a 

long straight wall and the current local map is 

saved for angle correction even though its shap is 

linear. Case 3 is necessary to select a local map 

having more complex shapes than the nearest 

reference map in order to increase the matching 

quality. In this case, the previously stored refer- 

ence map is replaced by the current local map. 

Once a local map is selected to be saved for 

later position estimation, the center of the local 

map is transformed to the centroid of the oc- 

cupied cells for the matching procedure (details 
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of this are given in Section 5.2) .  The number of 

line segments and the maximum angle difference 

between line segments are also saved as the con- 

figuration of the reference map as well as the 

coordinates of the centroid of the transformed 

map. 

5. Position Estimation 

Thus far we have described the method of 

selecting and storing reference maps in the initial 

exploration step. In this section, the details for 

position estimation based on cell-based matching 

are given. 

5.1 Correspondence indices 
Since there are many stored reference maps, 

finding the reference map that corresponds to a 

current local map should be done prior to posi- 

tion estimation. In cases where the position error 

is very small, one can assume that the closest 

reference map is most likely to be the correspond- 

ing one. However, a significant position error is 

expected here due to the frequent turns and long 

traveling distance of a robot while undertaking a 

given task. Accordingly, we define the following 

indices to check the correspondence between two 

maps: 
1. Configuration index ~-- This represents the cor- 

respondence of configurations in two maps. As 

stated in Section 2.2, the configuration of a 

local map is represented by the number of line 

segments and the maximum angle between 

them. Thus this index tells the robot whether 

or not the angle and the number of line seg- 

ments are the same as those of a reference map. 

2. Distance i n d e x - - T h e  distance between two 

maps can be an important clue to the corre- 

spondence between them because the character- 

istics of position error can be considered to be 

random in nature. This index allows one to 

determin the likely existence of a reference map 

within the robot's current error range as de- 

scribed in Section 3. 

3. Cell i n d e x -  This represents the correspon- 

dence between the number of occupied cells in 

two maps. Since the number of occupied cells 

in a map depends on the surface roughness and 

the shape of an object, this index can also 

provide information on the correspondence 

between two maps. Another important feature 

of this index is the fact that it tells the robot the 

moment that matching is possible, in  other 

words, the quality of matching mainly depends 

on the number of occupied cells in two maps 

and hence it is important to keep more than a 

certain ratio, Ro of the number of ceils 

between two maps before matching is done. 

If all the indices given above are satisfied, the 

robot assumes that the correspondence between 

two maps is satisfied, and starts to match the local 

map to the reference map at this position to 

estimate current position. 

One may question the use of the configuration 

index because the distance and cell indices can be 

sufficient for correspondence if the position error 

is not so large. Without this index, even for the 

case where there is only one reference map within 

the possible matching range, the estimation of 

position can fail. For example, consider a refer- 

ence map of a right angled corner while a local 

map represents only a part (only one line seg- 

ment) of the corner in the reference map. The 

distance index can tell that the two maps are 

within the possible matching range because there 

can be a certain amount of position error. At the 

same time the cell index can also be satisfied 

because it checks only the ratio of the total 

number of occupied cells in two maps. Conse- 

quently, the robot would try to match the two 

maps (one is of cornered shape and the other is of 

linear shape), and the results may be even worse 

than before. In actual implementation, this can 

happen frequently; hence the configuration index 

is essential for accurate correspondence. 

5.2 Matching-minimizing the discrepancy 
between two maps 

Once the correspondence between the reference 

and local maps is satisfied, then position estima- 

tion is performed by minimizing the discrepancy 

between the two maps. We adopt a method 

modified slightly from Moravec's (Moravec, 

1985) that matches two maps and reports the 
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Fig. 2 Schematic diagram of maps for matching(the 
cell A(x, y) is rotated(A') and transformed 
into A"). 

displacement and rotation that best takes one into 

the other. The goodness of the match between two 

maps at a trial displacement (dx, 6"y) and rota- 

tion (dO) is measured by computing the sum of 

products of corresponding cells in the two maps. 

This procedure is illustrated in Fig. 2. It trans- 

forms the coordinates of each occupied cell in the 

local map through the following equation to find 

a corresponding cell in the reference map: 

/cos 0- sin 0  x-xr + ex l 
/YJ = la in00 cos c~0J(y -~.- yr J (@+yr) 

(10) 

where (x,,, yr) is the current position of a robot, 

and (x, y) and (X,  I/-) are the position of an 

occupied cell in a local map and that in a refer- 

ence map, respectively. The probabilities of cells 

at (x, y) and (X, Y) obtained in this way are 

multiplied and summed. 

However, this procedure is very slow because it 

requires O (n 3) multiplications for each occupied 

cell when applied to maps with linear dimension 

of n. Considering that the number of occupied 

cells in a map is usually more than n, the total 

cost grows as O(n4). A speed-up is achieved by 

generating a hierarchy of reduced resolution ver- 

sions of each map. A coarser map is produced 

from a finer one by converting two by two sub- 

arrays of cells in the original map into single cells 

of the reduced one. That is, if the original array 

has dimension n, the first reduction is of size n/ 

2, the second of n/4 and so on. A match found at 

one level can be refined at the next finer level by 

trying only about three values of (dx, @, 6"0), in 

the vicinity of the values found at the coarser 

level. This method brings the matching cost down 

to slightly larger than O(n) (Moravec, 1985). 

We found, however, that a match found at the 

second level of size n/4 is very poor when applied 

to a local map, which results in an incorrect final 

match. There are only a small amount of cells 

labeled as occupied in the local map, and most of 

them appear in a particuler quadrant of a map. 

Thus the reduction produces a coarser map with 

only two or three occupied cells that are insuffi- 

cient for matching. The approach starting from 

the level of size n/2 can consume a good fraction 

of an hour of PC time. 

Considerable saving comes from the observa- 

tion that the difference between the centroids of 

two separately generated maps of the same area is 

less than a quarter of the linear size of a map. The 

trial displacement (dx, 6y) at the level of size n~ 
2 can be reduced to 1/16 of the original dimen- 

sion by starting in the vicinity of the centroids of 

two maps. With a typical n of 48, this method 

brings the matching time down to a few seconds. 

A further speed-up is achieved for a linear shaped 

map by trying only rotation 6"o with respect to the 

centroids of two maps because it cannot give any 

information on displacement. 

6. Experimental Results 

The autonomous selection of reference maps 

(natural landmarks) and position estimation 

methods have been implemented in a real environ- 

ment with our mobile robot. Figure 3 shows the 

photograph of the robot. 24 ultrasonic sensors 

(MURATA, Japan) are mounted at 15-degree 

angular intervals. The range accuracy of the sen- 

sor is about 0.01m. Table I displays the statistical 

properties of the position error for the estimation 

of error range of the robot's current position. 

These values were used to evaluate Qk in Section 

3. 

The robot was run following the walls the 

composed of straight lines and corners as shown 
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Fig. 3 Photograph of the robot. 

Table 1 Statistical properties of position error. 
(unit : meter, radian) 

Variable Move of 2 meter Turn of 2 radian 

Standard deviation of x 0.01229 0.001773 

Standard deviation of y 0.02171 0.001709 

Standard deviation of angle 0.01515 0.039650 

Covariance of x and y 0.00008 0.143136 

Covariance of x and angle 0.00002 0.182692 

Covariance of y and angle 0.00004 0.148425 

Covariance between x and y 0.29326 4028E 07 

Covarianee between x and angle 0.04622 1.12E 05 

Covariance between y and angle -0.23029 9.93E 06 

4+5 

Fig. 4 
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Experimental environment for position 
estimation. 

in Fig. 4. To do this, the exploration method for 
an unknown environment(Lim, 1998) was used. 

Sensor data from the robot were processed on an 
IBM compatible 80586 PC. At each sampling 
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The selected reference maps and distribution 
of orientations. 

time (0.1 seconds) the robot executes the follow- 
ing: one translation of a local map, acquisition of 
24 range returns, updating the local map, genera- 

tion of a steering command to follow the wall, 
clustering the orientations, and position estima- 

tion. 
When the algorithm to select reference maps 
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was implemented to the environment, the local 

map at position 1, 2, 3 and 4 in Fig. 4 were 

selected and memorized as reference maps. The 

program parameters used in this paper were Nmln 

=7,  Dm~x=5.0m, Dmm=l.8m and Re=0.7. Nmm 

and Re were determined through sets of matching 

experiments. Figure 5 show the selected maps to 

be used as landmarks, and the distribution of the 

orientations of cells in each map. The results of 

the orientation classification are tabulated in 

Table 2. One can see from the table that the 

difference between the estimated and true angles 

is less then half the aperture of the beam (w/2) .  

Considering that the effective width of the beam is 

30 ~ , the clustering method is accurate enough to 

use in identifying the shapes of object in a map. 

We moved the robot randomly in the environ- 

ment until the position and orientation error grew 

Table 2 The results of orientation classification. 

Position Object 
shape 
(the num- 
ber of line 
segments) 

1 3 
2 3 

3 2 

4 2 

True Estimatedi estimation 
angles angles error 
between between (degree) 
line line 
segments segments 
(degree) (degree) 

45,90 45,96 0,6 

90,180 83,191 --7,11 

90 87 3 

90 73 - 17 

Table 3 The estimated errors for each position. 
(unit : meter, radian) 

Error True Erroneou~ Corrected 
a f t e r  position position 9osition 
correction 

X 0'.'555 -0.588 0.494 -0.061 
Y 1.990 2.256 2.092 0.102 

Rad 5.068 5.350 5.050 0.018 

X 3.427 2.441 3.333 -0.097 
Y 1.738 2.813 1.831 0.093 

Rad 3.313 3.595 3.345 --0.032 

X 1.954 1,825 1,853 -0.101 
Y -1.134 -0.355 -I.281 -0.147 

Rad 2.757 3.039 2.739 0.018 

X 0.631 0.616 0.640 0.009 
Y -1.356 --0.937 -1,442 -0,086 

Rad 1.529 1.811 1.461 -0.068 

much larger than those produced in the explora- 

tion step (reference map selection step). Then the 

robot was run again following the walls using the 
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same algorithms as in the exploration step to test 

the position estimation algorithms. The results are 

Shown in Fig. 6. The reference map in each figure 
is the one recalled by the robot itself through 

checking the correspondence. Table 3 tabulates 
the estimated error for each position along the 
path. The maximum estimation errors were 0. 
147m and 0.068 rad for position and heading 

angle respectively. These results are good enough 
for practical use and surprisingly accurate con- 

sidering the wide beam aperture of a sonar sensor 

and the linear dimension of a cell (0.05m). 
The run time for reference map selection or 

correspondence check was negligible, so that the 
cycle time including local map construction and 
clustering the orientation was less than 0.1 sec- 
onds. The time required for matching is depen- 
dent on the number of occupied cells in two maps. 
The maximum time was 0.16 seconds for Fig. 6 
(b) which has more occupied cells than others, 

and the average was 0.077 seconds. 

7. Conclusions 

This paper has developed a system of position 
estimation for robot navigation. The system is 
composed of classification of an object's configu- 
ration in a map, autonomous landmark selection, 

estimation of correspondence, and cell-based 

matching between maps using the local map. 
The classification of object configuration is 

based on orientations of cells in a local map. 
These are clustered into several groups to extract 
the line segments in the map. This information on 
line segments is then used to classify the configu- 
ration of objects in the map for the selection of 

reference maps and estimation of correspondence 
between maps. In autonomous landmark selec- 

tion, the configuration of an object in a map and 
the distance between reference maps were taken 

into consideration for selecting distinctive maps 
among successively constructed local maps. Simi- 
lar concepts were also used for checking the 
correspondence between the stored reference map 
and the current local map. The position of the 

robot is then estimated through a centroid-based 
matching procedure. The usefulness of all these 

and Jong Hwan Lim 

approaches was illustrated with the results 

produced by a real robot equipped with ultra- 
sonic sensors operating in a real world enviran- 

ment. 
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